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ISIS: Mission Statement 
To advance the clinical and basic sciences 
in radiology, while improving our 
understanding of biology and disease by 
pioneering methods in the information 
sciences that integrate imaging with 
clinical, genomic and proteomic data. 
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ISIS Goals (1 of 2) 
•  To develop tools for: 

•  Collecting, annotating and integrating imaging, 
clinical, and molecular data 

•  Analyzing integrated databases 
•  To generate scientific discoveries linking molecular 

and imaging phenotypes 
•  To translate our findings into clinical care through 

decision support systems related to improving the 
value of images for personalized, less-invasive 
approaches to detection and treatment. 
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ISIS Goals (2 of 2) 

•  the full spectrum of information-intensive activities 
in imaging (e.g., image management, storage, 
retrieval, processing, analysis, understanding, 
visualization, navigation, interpretation, reporting, 
and communications), and 

•  non-imaging domains (e.g., pathology, genomic 
and proteomic markers, family history, prior 
medical reports, and clinical outcomes).  

To achieve these goals requires engagement in: 
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      Core Faculty 

Daniel Rubin, MD 
Assistant Professor  
Radiology  

Curt Langlotz, 
MD PhD 
Professor 
Radiology, Assoc 
Chair for 
Information 
Technology  

Sandy Napel, PhD 
Professor  
Radiology    
Co-Section Chief  

Sylvia Plevritis, PhD 
Professor  
Radiology   
Co-Section Chief 
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Beyond	  ISIS	  

David Paik, PhD 
Scientific Director 
Elucid Bioimaging 
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      Affiliated Faculty 
Chris	  Beaulieu,	  M.D.,	  Ph.D	  
Professor,	  Radiology,	  Chief	  of	  
Musculoskeletal	  Imaging	  

Bao	  H.	  Do,	  MD	  	  
Clinical	  Assistant	  Professor	  (Affiliated)	  
Radiology	  

Olivier	  Gevaert,	  PhD	  	  
Ac>ng	  Assistant	  Professor,	  Medicine	  -‐	  
Biomedical	  Informa>cs	  Research	  

Robert	  J.	  HerCens,	  M.D.	  	  
Professor	  of	  Radiology,	  Associate	  Chair	  for	  
Clinical	  Technology.	  

R.	  Brooke	  Jeffrey,	  M.D.	  
Professor,	  Radiology,	  Associate	  Chair	  for	  
Academic	  Affairs	  

Nishita	  Kothary,	  MD	  	  
Associate	  Professor,	  Radiology	  

David	  Larson,	  MD	  	  
Associate	  Professor,	  Pediatric	  Radiology	  
Associate	  Chair	  of	  Performance	  Improvement,	  
Department	  of	  Radiology	  

Parag	  Mallick,	  M.D.	  
Assistant	  Professor,	  Radiology	  

Ann	  Leung,	  M.D.	  
Professor,	  Radiology,	  Diagnos>c	  Radiology,	  
Chief	  of	  Thoracic	  Imaging	  

Jafi	  Lipson,	  MD	  	  
Assistant	  Professor,	  Radiology	  

Killian	  M.	  Pohl,	  Ph.D.	  	  
Senior	  Scien>st,	  SRI	  Interna>onal	  
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Elizabeth Colvin 
Admin Assistant:  
Sandy Napel,  
3DQ Lab 

Maggie Bos 
Administrative 
Assistant 

Danae Barnes  
Program Manager, ISIS 

Administrative Staff 

Lauren Miller 
Admin Assistant: 
Daniel Rubin 
Dept of Radiology 
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AAd	  
Administrative Staff 

Fuad Nijim 
CCSB Program  
Manager 

Margaret Murphy 
Student Services 
Coordinator 
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ISIS Researchers 
•  8	  Scien.fic	  Staff	  
•  10	  Postdoctoral	  fellows	  
•  8	  Graduate	  students	  
•  1	  Visi.ng	  scholar	  
•  1	  Visi.ng	  Professor	  
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ISIS Space 
Lucas Center 

Clark	  Center	  

+Porter	  
Avenue	  
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 Afternoon Breakout Groups 
   
 
   Students: 
    - Career planning, Stanford  

Strategic Initiatives  
    - “Life after Stanford,” 
     Dan Golden, CellScope, Inc. 
 
 
   Faculty and Affiliated Faculty: 
    - Research Overlap 
    - Synergies/Opportunities 
    - Future of ISIS: name, direction 
 

September 
11th, 2014 

 

Arrillaga Alumni 
Center, 326 Galvez  
 
9am- 4pm 

Agenda:  
 

• 9:00- 9:15   Introduction, welcome  
• 9:15- 9:45  Affiliated Faculty intro 
• 9:45-10:45  Keynote Speaker 
• 10:45-11:00 Break 
• 11:00-12:30  Electronic Poster 

Session  
• 12:30-1:30   Lunch, McColl Plaza 
• 1:30-3:00    Breakout Groups 
• 3:00- 4p     Close and Social Hour 

 

ISIS ANNUAL RETREAT 
    

Please 
join us 
for the 
Annual 
ISIS 
Retreat 

Keynote:  
Chris Johnson, Professor,  

University of Utah  
 
 

“Visualizing the Future of 
Biomedicine”  
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Student Posters 



Build computational methods and tools for extracting and 
organizing knowledge from text to assist users to comprehend 
unstructured text and find the information they are looking for: 

• Semantic query classification 

• Semantic query annotation 

Semantic Text Analysis 
Saeed Hassanpour 

Semantic Query Classification 

Direct Answer Triggering in Search, US Patent Filed, 2014. 
Temporal Context Aware Query Entity Intent, US Patent Filed, 2014. 

Image 
Meta-Classifier 

Image 
Classifier 

Video 
Meta-Classifier 

Video 
Classifier 

Location 
Meta-Classifier 

Location 
Classifier 

Music 
Meta-Classifier 

Music 
Classifier 

… … 

Domains 

 
 Image 
 

 Video 
 

 Location 
 

 Music 
 

 Movie 

… 

Query 

purple people eater 

Query Domain Classifier 

Movie 
Meta-Classifier 

Movie 
Classifier 

Queries 

q1 

q2 

q3 

q4 

q5 

q6 

q7 

q8 

… 

Urls 

u1 

u2 

u3 

u4 

u5 

u6 

u7 

u8 

… 

Seed Labeled Query 

Ontology 

Query: 

fifteenth president of united states 

 

Entity: 

Query Annotator 

Candidate 
Generation 

Queries 

query 

Valid Query Annotation Candidates 

<query, Entity1, Confidence1> 

<query, Entity2, Confidence2> 

Query Annotation Candidates 

<query, Entity1> 

<query, Entity2 > 

<query, Entity3> 

Candidate Filtering 

Query Annotations 

<query, Entity1, Confidence1’> 

<query, Entity2, Confidence2’> 

Contextual 
Disambiguation 

Gathering Labeled Data: Semi-Supervised Learning 

• Unlabeled data: Search log 

• Labeled data: Seed labeled queries 

Objectives Evaluation and Results: Based on 1,000 test query judgments: 

• Precision: 92% (12% increase compared to the baseline)  

• Recall: 83% (22% increase compared to the baseline) 

Semantic Query Annotation 

Candidate Generation 

Queries 

q1 

q2 

q3 

q4 

q5 

q6 

q7 

q8 

… 

Urls 

u1 

u2 

u3 

u4 

u5 

u6 

u7 

u8 

… 

Entities 

e1 

e2 

e3 

e4 

e5 

e6 

e7 

e8 

… 

Candidates 

(q4, e3) 

 

(q7, e8) 

… 

Ontology Search Log 

Valid Candidates 

<query, Entity, Confidence> 

Candidates And Features 

<query, Entity, {features}> 

Candidates 

<query, Entity> 

Feature 
Extraction 

Validity 
Assessment 

Model Training: 

• Extract features from labeled data 

• N-gram Frequencies: Use uni, bi, tri- gram frequencies 

• N-gram Types: Use proper name dictionaries 

• Train SVMs for the first layer classifiers 

• Train MARTs for the second layer classifiers 

Overview: 

Overview: 

Candidate Filtering 

References 

Validity Assessment Evaluation and Results: 1,000 labeled 
annotation candidates are used as a test set 

• Precision: 91% 

• Recall: 78% 

Contextual Disambiguation: Consider contextual information in 
query annotation: 

• Temporal information and patterns 

• Location information and patterns 

Temporal Disambiguation: Use a short recent search log window to 
generate candidate features 

Francis Bacon 
Painter  

(1909 – 1992) 

Francis Bacon 
Philosopher 

(1561 – 1626) 

Evaluation and Results: Applied to 500 test queries and their 
annotating entities. DCG@1 14% increased (p-value < 0.01) 

Location-Based Disambiguation: 

• Model annotating entities’ locations of interest distributions (GMM) 

• Extract location sensitive queries through KL-divergence comparison 

• Adjust location sensitive queries’ annotation confidence scores 

San Francisco Giants GMM New York Giants GMM 

Query: giants Query: giants 

Evaluation and Results: Applied to 1,000 ambiguous queries: 
• Precision: 85% 
• Recall: 98% 



DRUGMNEM: An optimization strategy for targeted combination of drugs using 
single- drug screening single cell data 

Benedict Anchang, Harris Fienberg, Sean Bendall, Rob Tibshirani and Sylvia Plevritis 

   Accumulating evidence implicates 
   intratumor heterogeneity as  an important 
 challenge to cancer treatment. Standard drug 

combinations do not  kill all tumor cells. We 
need to optimize drug  combination for each 
patient separately. We rationalize that 
targeting  multiple key pathways across 
different cell types or cell states will 
decrease the likelihood of emerging 
resistant populations.  
Our objective is to develop an optimized 
framework for effective combination 
therapy using cell population data that 
reveals heterogeneity in inter and intra-
cellular signaling at the level of single cells 
within a single patient 

Normal cells

tumor 1 tumor 2 tumor 3

Sensitive cells

Before treatment

After treatment

D3
D2
D1

drug

 Optimal therapy 

tumor 1 tumor 2 tumor 3

Before treatment

After treatment
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Scorer = argmaxS⇤
r

�����
[

k2c

 
[

u

Tku

!����� . (10)

Similarly as in the previous subsection, we can score all drug combinations S⇤
r and select the best com-

bination with the highest score.

DRUGMNEM uses the maximum conditional posterior probabilities of the protein targets
on the predicted population drug network to optimize drug combinations

Instead of counting the number of targets in a given drug combination, we could replace each target protein
by its posterior probability. Assuming mutually exclusive events between drugs in a given combination,
Equation 10 becomes,

Regimenbest = argmaxS
r
S⇤
r

0

B@Max

8
><

>:

0

B@
X

i2
S
u
Tku

Pcik

1

CA | k 2 c

9
>=

>;

1

CA . (11)

where Pcik corresponds to the conditional posterior probability of an e↵ect in protein i under drug k in
combination c. Finally as in the previous two subsections, we can score all drug combinations S

⇤
r and

select the best combination with the highest score.
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where �1 and �2 form the mixture of drug networks generating the entire data and m1+m2 = m. Given
the population drug nested network � and the positions of the target proteins ⇥ we can then optimize the
various drug-target combinations. We present two approaches to optimize drug combinations given the
data. The first method is based on the estimated probability matrix derived directly from limma output.
Although this approach is much faster since it circumvents the need for any network reconstruction
step, we show that this approach is not optimal when the underlying drug network is strongly nested and
propose an alternative approach which combines path analysis with the optimized positions of the targeted
proteins from the DRUGMNEM network and produces stronger di↵erences between drug combination
regimens.

DRUGMNEM uses the probability of e↵ects to score drug combinations

Once we have estimated the probabilities of each protein Ei to be di↵erentially expressed under each
drug intervention Sj represented as data Pij , a straight forward approach to score each drug combination
would be to assume additive e↵ects across targets and independence between drugs in a given combination
c, where c ✓ {S1, ..., Sn}. Using these assumptions the best 1, 2, r, r + 1, ..., n combination drug regimen
is given by,

Scorer = argmaxS⇤
r

X

i

 
1�

Y

k

(1� Pcik)

!
. (9)

where S

⇤
r corresponds to the set of all r drug combinations and Pcik corresponds to the probability of

an e↵ect in protein i under drug k in combination c . Ultimately, we can score all drug combinations S⇤
r

and select the best drug combination with the maximum score.
Alternatively, recall that posterior positions of the the target proteins are derived from the marginal

posterior distribution of the data given the model. Using Equation 9 and replacing each Pcik with the
posterior probability of an e↵ect in protein i under drug k in combination c condition on the predicted
network �, we can again score all drug combinations S

⇤
r and select the best drug combination with the

maximum score.

DRUGMNEM uses the maximized posterior positions of the protein targets on the pre-
dicted population drug network to optimize drug combinations

Recall a complete DRUGMNEM model as shown in Figure 2 comprise the directed hierarchy between the
drugs and the the posterior target positions of the proteins. Given the DRUGMNEM network, we can
score each r drug combination set c by simply going through all possible alternative paths u under each
drug node Sk in the combination set c and taking the union of all the targets across the paths denoted as
Tku. Once we have the union of targets for each drug node in the c combination set, we generate a union
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where �1 and �2 form the mixture of drug networks generating the entire data and m1+m2 = m. Given
the population drug nested network � and the positions of the target proteins ⇥ we can then optimize the
various drug-target combinations. We present two approaches to optimize drug combinations given the
data. The first method is based on the estimated probability matrix derived directly from limma output.
Although this approach is much faster since it circumvents the need for any network reconstruction
step, we show that this approach is not optimal when the underlying drug network is strongly nested and
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DRUGMNEM results on normal PBMC drug response under BCR, 
Pervanadate and PMA ionomycin stimulations 

Inhibitors: Ruxolitinib(Jak1-2), 
 Tofacitinib(Jak3), Lestauritinib(Jak2), 
Dasatinib(BCR/Abl), Imatinib(BCR/Abl) 

Dose level: max 10uM  
Time lag for inhibition: 15 mins  
Time lag for stimulation: 30mins 

1.  Anchang et al. (2014) CCAST: A model–based gating 
strategy to isolate homogeneous subpopulations in a 
heterogeneous population of single cells. PloS Computational 
Biology. 

2.  Markowetz et al. (2005) Non-transcriptional pathway features 
reconstructed from secondary effects of RNA interference. 
Bioinformatics 21, 4026-4032, 2005. 
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Result = 66.19 GBM 
Elastic Net Modeling
And Weighted Voting

Automated Classification of Brain Tumor Type in 
Digital Pathology Images Using Local Patches

Jocelyn Barkera, Assaf Hoogia, Adrien Depeursingea,b, and Daniel L. Rubina

aDepartment of Radiology, Stanford University School of Medicine, CA, USA.
beHeatlh Unit, University of Applied Sciences Western Switzerland, Sierre (HES-SO)

Tile Selection and Deep
Feature Extraction

Results and Model
Stability

Image Tiling and
Rough Feature Extraction

Feature Reduction
And Clustering

Cluster 1 3.12
Cluster 2 -6.31
Cluster 3 43.72
Cluster 4 25.43
Cluster 5 0.23



Segmentation and Classification of abnormal lesions 
Assaf Hoogi, Daniel L. Rubin 

OBJECTIVE 

Detection 

Segmentation 

Classification 

METHODS RESULTS 

CT breast cancer MRI brain tumors 
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Method 

  

  
Accuracy 

Our method 99.08% 

GLCM 89.91% 

Gabor 90.83% 

Classification 

Segmentation 

Detection 
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False negative 

True positive     

False positive 

Classification 
Input –  Segmented lesions Output – Lesions classification  

Segmentation  
Input – Detected lesions masks Output – Lesion segmentation 

Detection 
Input – Raw data + liver borders Output – Detected lesions 

References 
•  T. Chan and L. Vese, “Active contours without edges,” IEEE Trans. Image Process.,  

     vol. 10, no. 2, pp. 266–277, Feb. 2001 

•  S. Lankton, A. Tannenbaum, Localizing region-based active contours, IEEE Trans.Image Process. 17 (11) (2008) 2029–
2039. 

•  G. Csurka, C. Dance, C. Bray, L Fan, “Visual categorization with bags of keypoints, 
“ in Proceedings Workshop on Statistical Learning in Computer Vision, (2004). 

Detection + Classification 

Clustering Feature extraction 

Histogram  Classification  

Segmentation 

•  Level set segmentation  

•  Local framework 

•  Spatial features for optimal: 

     1. Localization 

     2. Curve evolution direction 

     3. Cost function    

•   Different models for different challenges 

MRI liver lesions 

CT liver lesions Mammography BOW with 2 different dictionaries – one for the intra-
lesion areas and second for the lesion’s boundaries 
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Statistics for 
liver lesions  

True\ 

Auto 	  

Cyst	   Met	   Hem	   Sensitivity	  

Cyst	   39	   0	   0	   100%	  

Met	   0	   46	   0	   100%	  

Hem	   0	   1	   23	   95.8%	  

Specificity	   100%	   98.4%	   100%	    	  



Meta-analytical methods for imaging genomics 

 Mapping genes and brain to neurological disorder 
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What does the neuroscience literature have to say about the experience of anxiety? 

NEUROSYNTH 
  

  

ALLEN  

BRAIN  

ATLAS 

M
A

P
S

 
G

E
N

E
 S

E
T

S
 

PHENOTYPES 

GENE SETS 

Enriched for anxiety? 

AUTISM SPECTRUM DISORDER 

BRAINTERMS BRAINTERM MAPS CORE GENES 

 

  

 

PROJECT WEB 

INTERFACE 



•  As part of CISNET lung group, we develop a 
microsimulation model that simulates lung 
cancer initiation, progression, detection and 
survival  

•  We calibrate our model to NLST data using 
and validated it using data from the Prostate, 
Lung, Colorectal, and Ovarian (PLCO) trial.  

•  We evaluate the impact of varying 
compliance levels to the USPSTF screening 
recommendations in the U.S. population.  

Evaluating the Impact of Varied Compliance to Lung Cancer Screening 
Recommendations using a Microsimulation Model  

Summer S. Han, S. Ayca Erdogan, Ann Leung and Sylvia K. Plevritis 

•  National Lung Screening Trial (NLST) 
showed low-dose computed tomography 
(LDCT) reduces lung cancer (LC) mortality1.  

•  Recently, the U.S. Preventive Services Task 
Force (USPSTF) recommended a heavy 
smoker aged 55 to 80 be screened annually 
by LDCT, thereby extending the stopping 
age from 74 to 80 compared to NLST 2.  

•  This decision was made partly with model-
based analyses from consortium Cancer 
Intervention and Surveillance Modeling 
Network (CISNET)3. 

•  The purpose of our microsimulation model is 
to evaluate the population-level impact of an 
intervention or health policy 
recommendation related to lung cancer.  

•  We simulate individual-level lung cancer 
history including incidence age in the 
absence of screening, tumor growth rate and 
progression to lethal metastases and 
histologic subtype.  

•  We then impose a specific screening 
intervention to each individual and estimate 
individual-level outcomes.  

•  To estimate the population-level outcomes of 
the given strategy, individual-level outcomes 
are aggregated.   

LC incidence (CT arm)  

LC mortality (CT arm ) 

•  Our simulation model reproduce the outcomes of 
the NLST and the PLCO data very closely 

•  We predict that perfect compliance to the 
USPSTF recommendation saves 501 LC deaths 
per 100,000 persons (compared to 455 in NLST)  

•  However, assuming compliance behaviors 
extrapolated from PLCO yields 175 LC deaths-
avoided per 100,000 persons (compared to 174 
in NLST) , demonstrating that the benefit for 
extending the stopping age substantially 
decreases. 

•  The implementation of the USPSTF 
recommendation is expected to contribute to a 
reduction in LC deaths, but the magnitude of the 
reduction will be heavily influenced by screening 
compliance. 

1.  Aberle D, Adams A, Berg C, et al. Reduced lung-
cancer mortality with low-dose computed 
tomographic screening. The New England journal of 
medicine 2011;365(5): 395.  

2.  Moyer VA. Screening for lung cancer: US 
Preventive Services Task Force recommendation 
statement. Annals of internal medicine 2014. 

3.  de Koning HJ, Meza R, Plevritis SK, et al. Benefits 
and harms of computed tomography lung cancer 
screening strategies: a comparative modeling study 
for the US Preventive Services Task Force. Annals 
of internal medicine 2014. 



Wireless capsule endoscopy (WCE) is a revolutionary devise that 
provides direct, noninvasive visualization of the small bowel.  

The ulcer is one of the most common lesions that affects 
approximately 10% of the people in the world. 

Our objectives are to automatically detect the ulcer frames in the 
WCE images.  
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Saliency based Ulcer Detection 
in Wireless Capsule Endoscopy Images 

Yixuan Yuan, Jiaole Wang and Max Q.-H. Meng  

OBJECTIVES 

Step 1: Propose a saliency detection method based on multilevel 
superpixel representation to outline the ulcer candidates. 

METHODS 

RESULTS 

Step1.1, Results of  saliency extraction.  

Step2.1, Results of  Classification Performance. 

Step 2: propose a modified Locality-constrained linear coding 
(LLC) method to encode the image based on the saliency map. 

Precision 

corresponds to the 

ratio of saliency 

pixels correctly 

assigned to all the 

pixels of extracted 

regions.  

Recall is defined 

as the percentage of 

detected salient 

pixels in relation to 

the ground truth 

number. 
I want to express my great gratitude to my CUHK supervisor 

Max Q. –H. Meng. 

1. J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality constrained linear 

coding for image classification,” in Computer Vision and Pattern Recognition 

(CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 3360–3367. 

2. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, “Slic superpixels 

compared to state-of-the-art superpixel methods,” Pattern Analysis and Machine 

Intelligence, IEEE Transactions on, vol. 34,no. 11, pp. 2274–2282, 2012.  

Step2.1, Results of  comparison on the original LLC 

method and our modified one. 

Original images          FT                 AC                 GBVS               MSSS               SDSP           Our method      Ground truth           

Step1.2,  Comparison results qualitatively and quantitatively.  



Our objectives are to develop a software 
framework… 

 
 

REFERENCES 

ACKNOWLEDGEMENTS 

Annotation Imaging Markup API & 
Semantic Information Extraction From Free Text Mammography Reports 

Hakan Bulu, PhD, Daniel L. Rubin, MD, MS 

OBJECTIVES 

METHODS TEXT 
METHODS 

RESULTS 



COLLECTED DATA / EVALUATION DESIGN OVERVIEW  

Characterization of 

 severity and evolution 

Automated Methods for retinal Disease Quantification 
and Prediction of Progression 

Luis de Sisternes, PhD,1  Theodore Leng, MD, MS,2 Daniel L. Rubin, MD, MS1 

1 Departments of Radiology and Medicine (Biomedical Informatics Research), Stanford University School of Medicine, Stanford, CA, USA  

2 Byers Eye Institute at Stanford, Stanford University School of Medicine, Palo Alto, CA, USA 

PURPOSE METHODS RESULTS 

3-D DRUSEN SEGMENTATION 3-D RETINAL LAYER SEGMENTATION 

  

    

 

 

SD-Optical Coherence Tomography (SD-OCT):  

- Possibility of axial characterization of sub-

retinal structures in a few micro-meter scale.  

- Manual segmentation extremely tedious. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPLICATIONS  

- Focus: Prediction of Age-related macular 

degeneration (AMD) progression. 

 

 

 

 

 

 

 

Prompt intervention can greatly improve visual 

outcome. High-risk patients should have more 

follow-up visits than low-risk patients. 

- GA quantification and prediction. 

- HQC toxicity severity assessment. 

- Macular hole recovery assessment. 

- Retinitis pigmentosa characterization. 

- Glaucoma characterization and assessment. 

Characterization of retinal disease typically based 

on the inspection of 2D color fundus photographs. 

COMPUTATION OF RISK SCORE 

 

-      found by generalized linear 

regression for increasing number of features. 
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Progression score at time   based in a Poisson 

distribution given      predictors 
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• Number  
• Mean area  
• Total area 
• Mean volume 

• Total volume 
• Area of extent 
• Mean slope 

• Mean reflect. 

• Std of reflectivity 

• Density  

• Max. height 

• Fellow eye status 

 

 

 
 
 
 

• RNFL thickness 
• Cup/Disk measurements 

• Inner retina thickness 

• Outer retina thickness 

 

• IS/OS disappearance 
• NFL+GCL abnormalities 

after ILM peeling. 

• Feature evolution 

 

We propose fully automated methods to 

quantitatively assess disease and predict 

progression using SD-OCT imaging 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Identification of disease 

status and risk assessment 

 

 

 
 

Patient data 

Automated 

segmentation and 

quantification 

Quantitative image 

features 

SD-OCT scans 

Demographics and 

medical history 

Genetic data 

Genetic data 

 

Wet AMD 
 

Dry AMD 

Progression 

- Initial disease stage 

- Characterized by the 

appearance of drusen 

- Advanced disease stage. 

- Treatment complicates as 

disease progresses. 

Unknown factors 

 

 

 

 

 

 

 

 

 

 

Collected data at clinical 

visit from patient 

diagnosed with dry AMD  

Age 

Gender 

 

\ 

 

SD-OCT images 

Age feature: 𝐹1 

Gender feature: 𝐹2 

 

 

 

3-D Retina layer 

segmentation 

 

 

 

3-D Drusen 

segmentation 

SD-OCT Imaging  
features: 𝐹3- 𝐹26 

Computation of risk score 
at 𝑡 elapsed months from 

visit: 𝑆(𝑡) 

Patient classification as 
high-risk or low risk at 𝑡 
elapsed months from visit 

Updated known 

SD-OCT imaging 

history 

Add to patient 

known history 

Input: Patient data Image processing Feature 

extraction 
Computation 

of risk score 
Output: Patient 

stratification 

1 2 3 4 5 

Environmental data Environ. Feat.: 𝐹𝑛- 𝐹𝑁 

Genetics Genetic Feat.: 𝐹𝑚- 𝐹𝑀 

t

PATIENT STRATIFICATION 

FEATURE EXTRACTION: QUANTIFICATION 

Drusen 

height 

Drusen slope 

En face area 
Drusen volume 

Reflectivity 

inside drusen 

Eye classified at time   since clinical visit: 

 

 

 

Threshold    determined by desired sensitivity/specificity.  
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PERFORMANCE AT GIVEN ELAPSED TIME SINCE CLINICAL VISIT 

SURVIVAL AT 12 MONTHS CLASSIFICATION 

- 186 AMD eyes (128 patients) over a period of 5 years.  

- 36 eyes showing progression during clinical follow-up. 

 

 

 

 

 

 

- Training on 790 observations: Pairs of feature set at dry 

AMD clinical visit and known outcome at follow-up.  

- Patient based 10-fold cross validation. 

- Confidence intervals by 106 bootstrap resampling with 

replacement. 

Progression risk at 12 months: 

- 5.93 (2.4, 9.85) % of total 

eyes. 

- 1.16 (0.00, 3.73) % for low-

risk group. 

- 13.32 (5.49, 22.70) %  for 

high-risk group. 



ePAD: Enabling routine imaging assessment of cancer treatment response 
in the clinical workflow 

Quantitative assessment of images of cancer 
patients is crucial to provide clinicians with 
objective information about treatment response 
needed for decision making. Making lesion 
measurements is laborious and error-prone. The 
electronic Physician Annotation Device (ePAD) is 
a Web-based tool to assist radiologists in viewing 
and measuring cancer lesions. Though presently 
geared to research settings, it could ultimately be 
adopted in routine clinical practice. Moreover, 
through its modular design, it is a platform which 
the community can adapt and extend to meet the 
needs of quantitative imaging practice. 

ePAD provides an API and plugin mechanism so 
that developers can extend the ePAD platform.  
API: 
1.  Java-based programming interface 
2.  Methods to read/write AIM to AIM database 
Plugins: 
1.  Front-end plugins to extend the user interface 
2.  Back-end plugins to add quantitative image 

analysis and processing capabilities 

AIM provides a structured representation of 
image metadata in computer-readable format. 
AIM templates provide customizable structured 
reporting forms. A radiologist views images, 
makes measurements, and describes their 
features, while ePAD seamlessly records all data 
in AIM format, stored in the ePAD AIM database. 

Funding Support: NCI QIN 
U01CA142555-01 and caBIG Imaging WS 

ePAD is a rich Web client workstation providing 
image viewing and annotation features. The 
ePAD client communicates with a server-side 
component which queries an existing PACS and 
stores ePAD image annotations in an AIM 
database. These resources are searchable in 
applications such as content based image 
retrieval and cancer lesion tracking. 

Automated lesion tracking and summary Quantitative Image Feature Plugin 

We are developing a pipeline mechanism for 
automated analysis of quantitative imaging 
biomarkers directly from the annotated images. 

Decision support: ePAD can leverage prior 
measurements in AIM to prompt the radiologist 
to annotate all target lesions (and to recognize 
missing measurements). It can also help the 
oncologist by producing patient response graphs 
and waterfall plots automatically from AIM-
annotated images. 
Auditing and quality assurance: AIM enables 
linking the lesion measurements to the actual 
annotations on images for rapid audit and quality 
assurance on quantitative assessments of images. 
Lesion tracking: ePAD can query historical 
annotations in a patient who had several follow 
up studies, automatically generating a 
quantitative imaging summary report. 

The ePAD AIM database produces automated 
summaries of target lesions and aggregate 
measures indicating treatment response. 

ePAD uses the XNAT platform for managing 
projects, users, and non-DICOM images to 
improve interoperability. The ePAD GUI organizes 
imaging studies under projects. 

Automated segmentation of PET images 



•  Develop a rapid learning system for 
cancer decision support 

•  No data sharing required since the 
computation of the models is 
distributed 

Rapid learning with primary healthcare data  
 Marina Bendersky, Samuel Finlayson, Balasubramanian Narasimhan, Philip W. Lavori, Daniel L. Rubin 

OBJECTIVES 
 

METHODS / PRELIMINARY RESULTS 
 Develop a method prototype using R and R ‘Shiny’ applications 

Front end requires three main processes (‘Shiny’ apps) to: 
propose a new distributed computation, set up a master process,  
and instantiate a slave site.  
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Tools for automatic tumor assessment 
1) Lesion tracking: Identify same 
lesions at different time points 
 
2) Automated RECIST summary 
of lesions and treatment response 
 
3) Discover new quantitative 
imaging biomarkers of cancer 
response by correlating them  
with clinical covariates (e.g., 
overall survival) 

Input un-annotated images Automatic Segmentation Computation of features 

Marina Bendersky, Daniel L. Rubin 

 
Automated assessment of clinical images 

 



Overview analysis workflow 

Automated	  computa,onal	  iden,fica,on	  of	  anatomical	  tumor	  loca,on	  associated	  with	  survival	  in	  
two	  large	  cohorts	  of	  human	  primary	  glioblasotmas	  

Results 

Tiffany Ting Liu1,2, Achal S. Achrol3,4,5, Lex A. Mitchell2, William Du2, Joshua J. Loya5, Scott Rodriguez5, Abdullah Feroze5, Josh Stuart6, Griffith R. Harsh IV5, Daniel L. Rubin1,2 

1Stanford Center for Biomedical Informatics Research and Biomedical Informatics Training Program; 2Department of Radiology; 3Stanford Institute for Neuro-Innovation and 
Translational Neurosciences; 4Institute for Stem Cell Biology and Regenerative Medicine, and 5Departments of Neurosurgery, Stanford University Medical Center, Stanford, CA. 

6Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA  

Figure	  1.	  (a)	  Automated	  image	  processing	  pipeline	  

(b)	  Algorithm	  training	  on	  SUMC	  	  
cohort	  
	  

(c)	  Algorithm	  valida,on	  using	  TCGA	  cohort	  
	  

Methods 
Anatomical	  structures	  associated	  with	  poor	  survival	  	  
	  	  	  	  	  	  	  Sta%s%cal	  analysis	  to	  iden%fy	  area	  of	  differen%al	  involvement	  (ADIFFI)	  consisted	  of	  first	  
construc%ng	  a	  con%ngency	  table	  comparing	  2	  differen%al	  phenotypes	  (e.g.	  poor	  survival	  
versus	  good	  survival)	  and	  presence	  of	  tumor	  versus	  no	  tumor	  involvement	  for	  each	  image	  
voxel	  with	  a	  2-‐tailed	  Fisher	  exact	  test	  performed	  on	  a	  voxel	  wise	  basis.	  
	   	   	   	   	   	  Permuta%ons	  with	  the	  threshold-‐free	  cluster	  enhancement	  (TFCE)	  method	  previously	  
described	  were	  applied	  to	  correct	  for	  mul%ple	  comparisons	  and	  a	  family-‐wise	  error	  rate	  to	  
ensure	  an	  FDR	  <	  0.05.	  	  
	  

Cerebrum	   Lobe	   Gyrus	   Tissue	  and	  cell	  
type	  

%	  Significant	  
voxels	  

Right	   Temporal	  	   Sub-‐gyral	   White	  maNer	  	   41.1	  
Right	   Sub-‐lobar	   Lateral	  

ventricle	  
Cerebro-‐Spinal	  

Fluid	  
30.7	  

Right	   Sub-‐lobar	  	  	   Extra-‐nuclear	   White	  maNer	  	   11.3	  
Right	   Limbic	  	  	   Posterior	  

Cingulate	  
White	  maNer	  	   10.5	  

Right	   Occipital	   Sub-‐Gyral	   White	  MaNer	   4.7	  

Fig.	  3.	  Kaplan-‐Meier	  survival	  curves	  of	  pa%ents	  with	  
GBMs	  depict	  decreased	  overall	  survival	  in	  pa%ents	  
with	  an	  overlap	  (Group	  I)	  vs.	  non-‐overlap	  (Group	  II)	  
with	  the	  prognos%c	  voxels	  iden%fied	  from	  the	  
training	  data	  set	  (log-‐rank	  test	  p	  =	  0.0341)	  in	  the	  
test	  TCGA	  cohort	  
	  

Molecular	  characteriza.on	  of	  the	  poor	  prognos.c	  group	  	  

SAMR	  analysis	  comparing	  Group	  I	  (overlap	  with	  prognos%c	  region)	  and	  Group	  II	  (	  no	  overlap)	  iden%fied	  genes	  amplified	  
in	  Group	  I	  enriched	  in	  neural	  stem	  cell	  processes	  (platelet-‐derived	  growth	  factor	  receptor-‐alpha	  signaling	  pathway)	  

Univariate	  cox	   Mul,variate	  cox	  
HR	  (95%	  CI)	   p-‐value	   HR	  (95%	  CI)	   p-‐value	  

Age	   1.02	  (1.007,	  1.03)	  	   0.00093	   1.02	  (1.01,	  1.03)	  	   0.001	  
Gender	   0.93	  (0.72,	  1.20)	  (M)	   0.567	  	   -‐	   -‐	  	  

Mul%centric/Solitary	   0.46	  (0.33,	  0.64)	  (S)	   2.37e-‐06	   0.66	  (0.47,	  0.93)	  (S)	   0.019	  
CEL	  tumor	  volume	  	   1.001	  (0.997,	  1.006)	  	   0.58	   -‐	  	   -‐	  	  

Surgical	  resec%on	  	   0.1992	  (0.1378,	  0.2880)	  (GTR)	  
0.4991	  (0.3731,	  0.6675)	  (STR)	  	   1.11e-‐16	   0.22	  (0.15,	  0.32)	  (GTR)	  

0.56	  (0.41,	  0.76)	  (STR)	  	  
5.88e-‐15	  (GTR)	  
0.000254	  (STR)	  

Univariate	  and	  mul%variate	  cox	  analysis	  of	  clinical	  variables	  in	  the	  training	  data	  set.	  Numbers	  in	  parentheses	  are	  95%	  
confidence	  intervals.	  GTR:	  gross	  total	  resec%on;	  STR:	  subtotal	  resec%on	  	  

Fig.	  2.	  Axial,	  sagiNal	  and	  coronal	  slice	  views	  of	  the	  region	  
associated	  with	  poor	  survival	  in	  the	  training	  SUMC	  cohort	  
(p-‐value	  <	  0.05)	  

Gene	  ID	   Gene	  name	   	  	   FDR	  q-‐value	   Chrom	  –	  Pos	  	   	  GO	  func,onal	  enrichment/literature	  cita,ons	  

GSX2	   GS	  homeobox	  2	   0	   -‐	   Forebrain	  dorsal/ventral	  paNern	  forma%on;	  
neuron	  fate	  specifica%on(1)	  

CHIC2	   Cysteine-‐rich	  hydrophobic	  domain	  2	   0	   4	  	   CHIC2	  and	  PDGFR	  regulate	  GBM	  stem	  cell	  markers	  
and	  other	  neural	  differen%a%on	  markers(2)	  

RPL21P44	   ribosomal	  protein	  L21	  pseudogene	  44	   0	   -‐	   -‐	  

KIT	   Mast/stem	  cell	  growth	  factor	  receptor	  
Kit	   0	   4	   LNX1	  and	  KIT	  amplifica%on	  has	  been	  shown	  

experimentally	  in	  CNS	  tumors	  (3)	  

PDGFRA	   platelet-‐derived	  growth	  factor	  receptor,	  
alpha	  polypep%de	   0	   4	   PDGFRA	  and	  KIT	  are	  commonly	  amplified	  in	  

GBM(4,	  5)	  	  

	  	   Molecular	  Subtypes	   	  	  
G-‐

CIMP	  
Non-‐GCIMP	  
Proneural	   Neural	   Classical	   Mesenchymal	   Total	  

Group	  I	  –	  overlapping	  	   0	   7	   2	   5	   6	   20	  
Group	  II	  –	  non-‐
overlapping	  	   4	   22	   21	   25	   31	   103	  

%	  in	  molecular	  subtype	   0	   24.1	  	   8.7	   16.7	   16.2	   16.3	  



To develop an age-period cohort model (APC)1,2,3: 
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Understanding the Temporal Trends of Breast Cancer Incidence in the United States: a Novel 
Approach to address Identifiability in Age-Period-Cohort models. 	


Diego F. Munoz, Sylvia K. Plevritis	


OBJECTIVES 

APC model’s identifiability problem: 
METHODS 

RESULTS 

that accounts for the effects of screening 
mammography (SCR) and menopausal hormonal 
therapy (MHT) using breast cancer incidence 
data from SEER registries.  

Fig 2. Lexis diagram showing age, period, cohort relationship 

Fig 1. A sample range of age, period cohort functions2.  

Since:  c = p – a 
there is over-parameterization from the linear 
dependence of the parameters. Hence, the 
system cannot be uniquely and simultaneously 
estimated!! 

Prior approaches to handle identifiability problem: 
 1. Add age-dependent constraints to the period and 
cohort effects specific to the problem3. 
2. Fit model assuming cohort or period effect to be 
zero on average with zero slope (AC-P or AP-C 
model, respectively)4. 

1.  Holford TR. The estimation of age, period and cohort effects for vital 
rates. Biometrics 1983; 39:311–324.  

2.  Holford TR. Age-period-cohort analysis. In Armitage P, Colton T, 
editors. Encyclopedia of biostatistics. Chichester: John Wiley & 
Sons; 1998. pp. 82–99.  

3.  Holford TR, et. al. Changing patterns in breast cancer incidence 
trends. J Natl Cancer Inst Monogr. 2006(36): 19-25. 

4.  Carstensen B. Age period-cohort models for the Lexis Diagram. Stat 
Med 2007. Jul 10;26(15) 3018-45. 

5.  Plevritis, S.K., et al., A stochastic simulation model of U.S. breast 
cancer mortality trends from 1975 to 2000. J Natl Cancer Inst 
Monogr, 2006(36): p. 86-95. 

Let:    
 P = PSCR + PMHT + PO   

where PO refers to all other period effects (non 
SCR or MHT). 
And: 

Fig 3.  AP-C model with zero cohort effects (left panel) 
        AC-P model with zero period effects (right panel)  

A
P 

C 

We present a novel approach to estimate temporal 
factors in breast cancer incidence by explicitly 
considering the effects of SCR and MHT.  

We use the previously developed Breast Cancer 
Screening Simulator (BCSS)5 capable of 
reproducing SEER trends by modeling the effects 
of SCR and/or MHT. 	


APC  ~   SEER 

By leveraging on this model, we estimate the 
individual temporal components iteratively. 

BCSS	

*SCR* 

A(P-PSCR)C 

APoC BCSS	

*SCR+MHT* 

  SEER 
~ 

~ 
  SEER 

Estimating the effect of screening mammography (SCR) 

Estimating the effect of menopausal therapy hormonal 

Estimating the ‘others’ period and cohort effects 

Using the APoC derived from prior steps: 

With this procedure, we re-allocate residual period 	

into cohort effects. 
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Fig 4.  Background breast cancer incidence with 
  no SCR and no MHT effects.    

Fig 5.  Holford’s Background breast cancer incidence 
 with no SCR effects3.    

Notably lower cohort effect and SCR effects. Our approach 
produces a residual period effect in younger cohorts that can 
be associated with increases in age at parity and obesity.    



PROBLEM 

Problem: Mammography is subject to reader 
variability and inaccuracy. 

Breast Cancer is the most deadly cancer among women 
worldwide. Early detection greatly improves chance of 
survival, but currently only about 20% of biopsied lesions 
are actually cancerous [1]. This results in: 

  Wasted resources 

  Unnecessary invasive procedures 

  Psychological damage to false positives [2] 

Solution: Computer-Aided Diagnosis (CADx) 

Approach: Unsupervised feature learning 

Specific Aims 

 To develop methods of unsupervised feature learning 
for quantitative analysis and characterization of breast 
lesions and dense tissue 

 To build a CADx system for decision support in 
mammography 

 To evaluate accuracy of CADx predictions 

Overall goal: To improve positive predictive value 
of mammography screening. 

Computer-Aided Diagnosis of Breast Cancer Using Unsupervised Feature Learning 
Rebecca L. Sawyer, Daniel Rubin 

METHODS 

Pipeline 

1. Breast and Pectoral Muscle Segmentation 

•   RESULTS 

Data 

• DDSM 

• Training Set 

• 1228 images (not including mirrored images) 

•  563 masses (355 benign, 208 malignant) 

• Test Set 

• 404 images 

•  197 masses (130 benign, 67 malignant) 

Analysis 

•  Hold-out validation 

•   

￼ 

For additional information please contact: 

Rebecca Sawyer 
Biomedical Informatics 
Stanford University 
rlsawyer@stanford.edu 
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 Funded by SGF 

Histogram 
Equalization 

Histogram of 
Intensity Values 

Determine Knee 
Point 

Threshold at 
Knee Point 

Remove Any Small 
ROIs and Find 
Hough Lines 

Set Everything 
above Longest 
Hough Line to 

Zero 

Final Mask 

[3-4] 

Weights from First Autoencoder 


