Information Sciences
in Imaging at Stanford

State of the Section

Information Sciences
in Imaging at Stanford




!! STANFORD/! Information Sciences in Search This Site
‘ SCHOOL or MEDICINE |mag|ng at Stanford (ISlS) () This Site Only ( )Stanford Medical Sites

Home Projects Publications People Events

Stanford Medicine » School of Medicine » Departments » Radiology » ISIS: Information Sciences in Imaging

Daniel L= Rouhiny MD;MS

My research program develops computational methods to
extract Quantitative information from fmages and
integrate them with clinical and molecular data
to mﬁ/e a/mwc(y of image biomarkers of disease and
decision support applications to myrm’c c/m;m/ d/ccm*cxaf

1SIS LINKS INFORMATION SCIENCES IN IMAGING ISIS NEWS

Home 0 M : = =

Projects ur ISsion E E 2011 ISIS Seminar Series:

— - The ISIS group hosts a monthly

Representative Publications Our mission is to advance the clinical and seminar series about a wide
basic sciences in radiology, while improving ranging field of topics.

People our understanding of biology and the

i manifestations of disease, by pioneering Course Offerings:

Secure Login methods Information Sciences| = Computational Methods for
in the information sciences that integrate | in Imaging at Stanford| = Biomedical Image Analysis and
imaging, clinical and molecular data. Interpretation (BMI 260)

Computational Methods for
Biomedical Image Analysis and
Interpretation: Lectures (BMI

Our vision is that we gain new knowledge from imaging examinations 261)
by integrating and analyzing them with related clinical and molecular

data. ISIS aims to achieve this goal by exploring the full spectrum of
information-intensive activities in imaging (e.g., image management,

storage, retrieval, processing, analysis, understanding, visualization,
navigation, interpretation. reporting. and communications) and in non-

Our Vision



ISIS: Mission Statement

To advance the clinical and basic sciences
in radiology, while improving our
understanding of biology and disease by
pioneering methods in the information
sciences that integrate imaging with
clinical, genomic and proteomic data.
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ISIS Goals (1 of 2)

* To develop tools for:
 Collecting, annotating and integrating imaging,
clinical, and molecular data
* Analyzing integrated databases

* To generate scientific discoveries linking molecular
and imaging phenotypes

 To translate our findings into clinical care through
decision support systems related to improving the
value of images for personalized, less-invasive
approaches to detection and treatment.
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ISIS Goals (2 of 2)

To achieve these goals requires engagement in:

the full spectrum of information-intensive activities
In imaging (e.g., image management, storage,
retrieval, processing, analysis, understanding,
visualization, navigation, interpretation, reporting,
and communications), and

non-imaging domains (e.g., pathology, genomic
and proteomic markers, family history, prior
medical reports, and clinical outcomes).
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Professor ¥ L= Professor
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Beyond ISIS

David Paik, PhD
Scientific Director
Elucid Bioimaging
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Affiliated Faculty
Chris Beaulieu, M.D., Ph.D

Professor, Radiology, Chief of Associate Professor, Radiology
Musculoskeletal Imaging

David Larson, MD
Bao H. Do, MD

Associate Professor, Pediatric Radiolo
Clinical Assistant Professor (Affiliated) : f gy
o Associate Chair of Performance Improvement,

Department of Radiology

Olivier Gevaert, PhD

Acting Assistant Professor, Medicine - Parag Mallick, M.D.

Biomedical Informatics Research Assistant Professor, Radiology

Ann Leung, M.D.

Robert J. Herfkens, M.D. Professor, Radiology, Diagnostic Radiology,
Professor of Radiology, Associate Chair for chijef of Thoracic Imaging

Clinical Technology. Jafi Li MD
Jafi Lipson, VID

R. Brooke Jeffrev. M.D. Assistant Professor, Radiology
Professor, Radiology, Associate Chair for
Academic Affairs Killian M. Pohl, Ph.D.

Senior Scientist, SRI International
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Administrative Staff

Danae Barnes i Maggie Bos
Program Manager, ISIS &5 Administrative

Assistant

Lauren Miller 1 Elizabeth Colvin
Admin Assistant: ' Admin Assistant:
Daniel Rubin | = Sandy Napel,
Dept of Radiology — 3DQ Lab
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Administrative Staff

Fuad Nijim
CCSB Program
Manager

Margaret Murphy
Student Services
Coordinator
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|ISIS Researchers

8 Scientific Staff

10 Postdoctoral fellows
8 Graduate students

1 Visiting scholar

1 Visiting Professor
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ISIS ANNUAL RETREAT

September Please
11th, 2014 join us

Arrillaga Alumni for the
Center, 326 Galvez Annual

ISIS
Retreat

Keynote:

Chris Johnson, Professor,
University of Utah

“Visualizing the Future of
Biomedicine”

Afternoon Breakout Groups

Students:
- Career planning, Stanford
Strategic Initiatives
- “Life after Stanford,”
Dan Golden, CellScope, Inc.

Faculty and Affiliated Faculty:
- Research Overlap

- Synergies/Opportunities
- Future of ISIS: name, direction
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Semantic Text Analysis

Saeed Hassanpour

Objectives Evaluation and Results: Based on 1,000 test query judgments:

Build computational methods and tools for extracting and e Precision: 92% (12% increase compared to the baseline)
organizing knowledge from text to assist users to comprehend

unstructured text and find the information they are looking for:

e Recall: 83% (22% increase compared to the baseline)

e Semantic query classification Semantic Query Annotation
e Semantic query annotation Overview:
Semantic Query Classification Query Annotator

Ove rview. Query Domain Classifier
Domains
N
Image Image
Classifier Meta-Classifier ) M Image
) Query:
Video Video > M Video !
Classifier Meta-Classifier fifteenth president of united states
N .
Query Location Location [ Location
|:> Classifier Meta-Classifier ) |:>
purple people eater N M Music
Music Music R
Classifier Meta-Classifier _
q J M Movie
[ Movie Movie A Query Annotation Candidates
. Classifier Meta-Classifier ) Queries Candidate <query, Entity,>
K / query E> Generation E> <query, Entity, >

<query, Entity;>

Valid Query Annotation Candidates

Gathering Labeled Data: Semi-Supervised Learning > [Candidate F”teringl > <query, Entity, Confidence,>

<query, Entity,, Confidence,>

 Unlabeled data: Search log

Query Annotations

 Labeled data: Seed labeled queries > Contextual oy e Entity,, Confidence,’
Disambiguation <query, Entity,, Confidence,’>
Queries Urls . .
S p— " Candidate Generation
d2 Uz Search Log Ontology
9s U3 Queries Urls Entities Candidates
4y > Uy,
a, U, e,
s o SP) u, \ e
2
A a3 Us
q; u, u, . (,, €3)
as Us €s
Model Training: e h (%) (a5, &)

e Extract features from labeled data

 N-gram Frequencies: Use uni, bi, tri- gram frequencies Candidate Filtering
* N-gram Types: Use proper name dictionaries Candidates | Feature o Candidates And Features
<query, Entity> Extraction <query, Entity, {features}>

* Train SVMs for the first layer classifiers
Validity Valid Candidates

* Train MARTSs for the second layer classifiers E>[ Assessment ]E> <query, Entity, Confidence>
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Validity Assessment Evaluation and Results: 1,000 labeled
annotation candidates are used as a test set

e Precision: 91%
e Recall: 78%

Contextual Disambiguation: Consider contextual information in
gquery annotation:

 Temporal information and patterns
e Location information and patterns

Temporal Disambiguation: Use a short recent search log window to
generate candidate features

News about Francis Bacon
bing.com/news

Francis Bacon painting auctioned for more than $142 million, breaks

record
CHNM

(CNN)— A painting by artist Francis Bacon sold for 142,405,000 on
Tuesday, breaking the record as the most expensive piece of art ever
auctioned, according...

Francis Bacon's 'Lucian Freud triptych breaks auction price records Francis Bacon Francis Bacon
Los Angeles Times

An |diot's Guide To Francis Bacon, The Man Behind The World's Most Expensive Ph l Iosopher Pa Inter

Painting (1561 —1626) (1909 — 1992)
The Huffington Post

Evaluation and Results: Applied to 500 test queries and their
annotating entities. DCG@1 14% increased (p-value < 0.01)

Location-Based Disambiguation:
 Model annotating entities’ locations of interest distributions (GMM)
e Extract location sensitive queries through KL-divergence comparison

* Adjust location sensitive queries’ annotation confidence scores

Query: giants Query: giants

San Francisco Giants GMM New York Giants GMM

Evaluation and Results: Applied to 1,000 ambiguous queries:
* Precision: 85%
 Recall: 98%

References

Direct Answer Triggering in Search, US Patent Filed, 2014.
Temporal Context Aware Query Entity Intent, US Patent Filed, 2014.



DRUGMNEM: An optimization strategy for targeted combination of drugs using
single- drug screening single cell data

Information Sciences

. . . . . . . Qg in Imaging at Stanford
Benedict Anchang, Harris Fienberg, Sean Bendall, Rob Tibshirani and Sylvia Plevritis
OBJECTIVES o amiardiermry RESULTS

Accumulating evidence implicates e - - e . e - .
. . . Vob DRUGMNEM predicts pP38 MAPK inhibitor(SB) as an important drug for
intratumor heterogeneity as an important wmor 1 —_— wmor 3 . .

challenge to cancer treatment. Standard drug 9 @ @a combination therapy for Hela cells DRUGMNEM oredicti

i 1 i rediction
combinations do not kill all tumor cells. We ! ! ! Inhibitors: JNK 1(JnK), GDC(PI3K), DRUGMNEM Network o
need to optimize drug combination for each Aftor ot GSK(Mek), SB(pP38 MAPK) SB GDC SB
patient separately. We rationalize that - 22 &8 INK1SB
targeting  multiple key pathways across e ww ® Stimulation: TRAIL (Base line treatment) GSK GSK GDC SB
different cell types or cell states will 22> 'SShCii. Gell states : Apoptofic and survivor from % 1 GSK JNK | SB
deqrease the _ likelihood of emerging Optimal therapy cPARP/cCas;paceIS INK IK ) GDC JNK | SB
resistant populations. 0= = = NN -
Our objective is to develop an optimized T 1 T Intracellular markers: . Goe— S
framework for effective combination wmort e wumers Mé'js'ﬁgggigpgssss'zézg'5;;’2;""3' C'°"°9e"'° ""*d'c‘f°"
therapy using cell population data that £ & gBadSerﬂ’z Cézspaée3 p,gb Ki67 eoc 1 Drug regimens % survival
reveals heterogeneity in inter and intra- 1 1 1 pAMPK, cPARP, IKBalpha, S6, pS6, pErk, KL g GSKGDCSB  1.6%
cellular signaling at the level of single cells on pHSP27, pAkt, pNFKB, pMAPKAPK2, ::K N GSK SB 6.8%
within a single patient o RSK2, p4EBp1 Banan; 5 ppRRRRERS: GSK GDC 25.3%
METHO S22 W cone o3 AL 100%
= B

MAPKAPK=2 A.
Bad
Bad
PPIORSK S
pBads136 S.
pHistoneH3 S.

ol

DRUG Mixture Nested Effects Models (DRUGIVINECM) DRUGMNEM results on normal PBMC drug response under BCR,
A B

Drug Treatments

Treatments Treatments Treatments Pervanadate and PMA ionomycin stimulations
*_ D1 D2 D3 D1D2D3 C D1D2D3 A B
ion 5 & .3 P1P2P3  P1P2P3  pfppp3 o t-SNE map on pooled drug data BCR l L L
Step 1 Population dentifcaton i ] | - 1 Inhibitors: Ruxolitinib(Jak1-2),
i - —— o4 Tofacitinib(Jak3), Lestauritinib(Jak2),
Dasat estaurtini - .
Sunal stte q s ‘"‘bl U, ° Dasatinib(BCR/AbI), Imatinib(BCR/Abl)
—— matini :
[ — g
onin Dose level: max 10uM
fofacitini . . e .
g Rl Time lag for inhibition: 15 mins
=] . . . .
Step 2 Nested Effect modeling I | e Time lag for stimulation: 30mins
roteins  Proteins  Proteins % - + ~ Proteins
Dasatinib Dasatiie Ruxalinib
REFERENCES
£ D Ruoltinib Rusoltnib
Rank c D 1. Anchang et al. (2014) CCAST: A model-based gating
D1D2 \/ D1 D2 Orthovanadate PMA strategy to isolate homogeneous subpopulations in a
Step 3 Link analysis D1—>D3 = P1+P2 D1D3 Rank \ / Dasatinib Ruxglitinib:Tofac... Lestaurtinib Dasatinib  Imatinib  Ruxelitinib  Lestaurtinib Ziﬁleorggeneous population of single cells. PloS Computational
D2->D3 = P2+P3 DZD[:B h 03 2. Markowetz et al. (2005) Non-transcriptional pathway features
L inib 4 reconstructed from secondary effects of RNA interference.
D2 ' Bioinformatics 21, 4026-4032, 2005.
D3 matinio oot
. . . basainib
Scoring drug combinations i : = g SOl ACKNOWLEDGEMENTS
g g where S} corresponds to the set of all  drug combinations 8 Rusaltini> g ACKNOWLEDGEMENTS
Lestaurtinio - .
. Peix, corresponds to the probability of where 57 c — I Harris Fienberg Rob Tibshirani : Health Research
Regimenpes = argmax | Max Z Pex | |[kec ! i " S DB:::TS — Proteins (Nolan’s lab) and policy, and Statistics Stanford
ysr €U, L e . o O iy pran e
u (i“ e m: U aCtos )RUGMNEN netwe hder eacn [ Lastautints wxliini o T eearint Sean Bendall Garry Nolan : Head (Nolan lab)
. R e ostaurtii

Lestaurtinib Pathology Stanford Immunology Stanford



Automated Classification of Brain Tumor Type In
Digital Pathology Images Using Local Patches

Jocelyn Barker?, Assaf Hoogi?, Adrien Depeursinge®”, and Daniel L. Rubin®
‘Department of Radiology, Stanford University School of Medicine, CA, USA.
eHeatlh Unit, University of Applied Sciences Western Switzerland, Sierre (HES-SO)

Feature Reduction Tile Selection and Deep
And Clustering Feature Extraction

Cluster1 3.12
Cluster 2  -6.31
43.72
25.43
Cluster 5 0.23

ACtuaI “o e Result = 66.19 GBM
GBMILGG e B N . Elastic Net Modeling

Image Tiling and
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______ And Weighted Voting
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and Classification of abnormal lesions

Information Sciences
in Imaging at Stanford

Assaf Hoogi, Daniel L. Rubin

BOW with 2 different dictionaries — O,ne for the intra- MRI brain tumors CT breast cancer CT liver lesions Mammography
lesion areas and second for the lesion’ s boundaries -

Segmentation
* Level set segmentation
Detection Classification e Local framework

* Spatial features for optimal:

=
/

1. Localization

Segmentation 2. Curve evolution direction

3. Cost function

* Different models for different challenges

30

16 :
\

14

12

10

METHODS RESULTS Statistics for
. Detecton

Detection Detection liver lesions

20
8 15 ‘
® 10
Input — Raw data + liver borders Output — Detected lesions | | 4I I I i IIIII
¢ ¢ > . I
_ " & | f I llll I . NN IIIlIll .
Segmentation

075 o078 081 084 087 09 ‘093 0.96 0.99 0 5 20 25 30 35 40 45 50 55
Input — Detected lesions masks Output — Lesion segmentation

Number of cases
Number of cases

Dice overlap [%] Normalized Hausdorff distance [%)]

Classification

Sensitivity

. ; 00
Our method 99.08%
\Y [ 0 46 0 100%
hen
Soecifici

Classification

Input — Segmented lesions Output — Lesions classification

Accuracy

True positive

Detection + Classification False positive

. GLCM 89.91% ! 23 95.8%
Segmentation

[Jdiitdin’d 100% 98.4% 100%
90.83%

MRI liver lesions

[monkey, dog, tree, ...)

A\ 4
2 X
&
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Meta-analytical methods for imaging genomics

Problem Aim 1: summarize behavioral phenotypes as brain maps and gene sets
We are terrible at diagnosis and treatment of neuropsychiatric disorder 1. Assoctiaténg_ behavioral terms 2. Find regulatory patterns 3 Brainterm. ..
O pbrain regions TR -
9 Seloct form within brainterm maps
Select term frequency threshold > 0.001
Why? Text mine the literature, and count!
What does the neuroscience literature have to say about the experience of ? ) 4000
The Gold Standard DSM-V _ _ ; 60K praoes. A
TN NEAR Y - Mo biological validity activalion present | actvation absent ; NP2
L MANUALOF + Heterogeneous categories 5,469 sucies st HISTIHAG
. : T Top 17 journals iety absent anxiety absent
DSM 5‘ High comorbidity gg;‘l'quoﬁ ;f;‘sem sotivation absent Match points (<3mm) .S.I?C22A14

Define gene sets: Shapley Value Regression

Who is suffering?
e 61.5 milion Americans (1 in 4 adults)

+ 60% of whom receive no freatment Aim 2: fest brain maps and gene setfs against neuropsychiatric disorder

« Lost earnings per year

AMERICAN PSYCHIATRIC ASSOCIATION

1. Gene Set Enrichment Analysis A Significant Result Means 2. Novcse: Visuqlizqtion
rategy

Enrichment Score: the degree to which a gene set S is

overrepresented at the extremes of a ranked list of 1. Summary image of disorder
- differential expression between two phenotypes. 2. Match to SOM nodes
HOW ‘I'O fIX? 3. Color by score
. 4 CIITA e
49 disorders (GEO) | mood HISTIH4G Sk
] CIITA vision SLC22A14 . o
Meta-analytical methods that infegrate genes, brain, and behavior can NFE2 Brain Laftice
PPARA self-organizing |
: ! 525 behavioral terms HISTIH4G map (SOM) 4 =
A) recapitulate known knowledge about disorders, and U /down reguiated sefs SLC22A14 ol T C
B) provide a signature that predicts behavior. Rl | DD - DN
Enriched for ? : e :
behavior brain map genes :
Aim 3: validate brain maps and gene sefts

N Isn’t that just imaging genomics?
2 There is no work that brings meta-analysis o this domain. o

. - & ISTD SD2cirurn Disorce " 2. Predict Behavioral Phenotype
(i Alzheimer 1586 411 44
1. Recapitulate Known Knowledge = e
S Parkinson ]
" o ’
= 116 21 0 :
B schizophenio —————_JRVCEENY 1 behavior

genes

nnnnnn

behavior

Vanessa Sochat The Wall Lab Stanford University School of Medicine
vsochat@stanford.edu walll-lab.stanford.edu Funded by NSF, SGF, Microsoft Research

Functional Annotation for ASD-RETT . f . )
A novel meta-analytical approach for imaging genomics

o

Informed by imaging genetic signatures of behavior

(

brain map




Evaluating the Impact of Varied Compliance to Lung Cancer Screening
Recommendations using a Microsimulation Model
Summer S. Han, S. Ayca Erdogan, Ann Leung and Sylvia K. Plevritis
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BACKGROUND

* National Lung Screening Trial (NLST)
showed low-dose computed tomography
(LDCT) reduces lung cancer (LC) mortality!.

* Recently, the U.S. Preventive Services Task
Force (USPSTF) recommended a heavy
smoker aged 55 to 80 be screened annually
by LDCT, thereby extending the stopping
age from 74 to 80 compared to NLST 2.

* This decision was made partly with model-
based analyses from consortium Cancer
Intervention and Surveillance Modeling
Network (CISNET).

OBJECTIVES

* As part of CISNET lung group, we develop a
microsimulation model that simulates lung
cancer initiation, progression, detection and
survival

*  We calibrate our model to NLST data using
and validated it using data from the Prostate,
Lung, Colorectal, and Ovarian (PLCO) trial.

*  We evaluate the impact of varying
compliance levels to the USPSTF screening
recommendations in the U.S. population.

METHODS

MicrosimulationtModel

e The purpose of our microsimulation model is
to evaluate the population-level impact of an
intervention or health policy
recommendation related to lung cancer.

*  We simulate individual-level lung cancer
history including incidence age in the
absence of screening, tumor growth rate and
progression to lethal metastases and
histologic subtype.

*  We then impose a specific screening
intervention to each individual and estimate
individual-level outcomes.

* To estimate the population-level outcomes of
the given strategy, individual-level outcomes
are aggregated.

Natural'historyimodel forllCasiaimain Comparnison o NLESIVSEUSPSIE
componentiofitheimicrosimulationimodel Undervanying'compliancelevels

Natural history model for lung cancer

Tumor Size V(f)
V,=V +B,/f

V(t)=V,exp(rt) [ BO=VOVT ) o

Detection due to primary tumor
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V| Cure Threshold

¢Bp

TwoTe Tu T Time t

Onset of Observable Detection due Survival Time
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RESULTS
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Conclusions

*  Our simulation model reproduce the outcomes of
the NLST and the PLCO data very closely
*  We predict that perfect compliance to the
USPSTF recommendation saves 501 LC deaths
per 100,000 persons (compared to 455 in NLST)
However, assuming compliance behaviors
extrapolated from PLCO yields 175 LC deaths-
avoided per 100,000 persons (compared to 174
in NLST) , demonstrating that the benefit for
extending the stopping age substantially
decreases.
The implementation of the USPSTF
recommendation is expected to contribute to a
reduction in LC deaths, but the magnitude of the
reduction will be heavily influenced by screening
compliance.

REFERENCES

1. Aberle D, Adams A, Berg C, et al. Reduced lung-
cancer mortality with low-dose computed
tomographic screening. The New England journal of
medicine 2011;365(5): 395.

2. Moyer VA. Screening for lung cancer: US
Preventive Services Task Force recommendation
statement. Annals of internal medicine 2014.

3. de Koning HJ, Meza R, Plevritis SK, et al. Benefits
and harms of computed tomography lung cancer
screening strategies: a comparative modeling study
for the US Preventive Services Task Force. Annals
of internal medicine 2014.



Saliency based Ulcer Detection
In Wireless Capsule Endoscopy Images

. _ in Imaging at Stanford
Yixuan Yuan, Jiaole Wang and Max Q.-H. Meng

OBJECTIVES RESULTS Step2.1, Results of Classification Performance.

®\\Vireless capsule endoscopy (WCE) is a revolutionary devise that Stepl.1, Results of saliency extraction 100
provides direct, noninvasive visualization of the small bowel. o ' " T I l
- - (b) Saliency maps based on texture and color (¢) Saliency map fusion (d) Saliency map fusion of texture
.The UIcer |S One Of the mOSt COmmon IeS|OnS that a,ffeCtS (a) Original WCE image feature under!)different sutpe:‘pi.\'el levels across multiplslevels and color sls)alicncy ma:)st '-..,I_“?':;"l I _|1: i E i:[ 1 I I -
approximately 10% of the people in the world. | ' . _ $ ® b b 3
®Our objectives are to automatically detect the ulcer frames in the 3. B _
WCE images. g . F
= |14
METHODS - -
- - . - 5 . =
Step 1: Propose a saliency detection method based on multilevel - § i Accuracy
superpixel representation to outline the ulcer candidates. -V 1 Sensitivity
Saliency maps based on rexrure = S pEElnE]tF i
feature unfler different 5 — . E : : _
superpixel levels 0 21 A 2(1 ull] il 1) =i i | (K]

Vocabulary Size

{ o’ Saliency map fusion
. { [Jevﬂl 2 ACross mUItipIE IEYEIS SﬂliEﬂE\" map fusion
Uleer & normal withsi:u{l:ﬁs':epipli?:iizes/'( ol Texture saliency ) ©f texture and color
imges p g Texture saliency saliency maps
Multi-level ixel
[ WCE images )——)( HIHFIEVE ﬂupf:rplxe ) ;Fina] saliency J
representation
\(J . Color saliency )
Level 2

( Level 1

Step2.1, Results of comparison on the original LLC
method and our modified one.

Color saliency il | | ¥ | | = ¥ |
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superpixel levels _
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Step 2: propose a modified Locality-constrained linear coding e~ 1 —= 5
(LLC) method to encode the image based on the saliency map. = " E
JSIFT 7 = Li 2
;; ~ -
M 6'-.. % Codewn a 73 I |
dHOG - T . e |
i ] e <, -i
s " =g Y. Original images FT AC GBVS MSSS SDSP Our method  Ground truth
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{a} WCE images M
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ratio of saliency
pixels correctly

assigned to all the REFERENCES
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T P

(1] |°|'f1 1111

{dl} Suliency map e Qrighal LLE cading S piXElS of extracted 1. J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality constrained linear
\ -§ reg ions. coding for image classification,” in Computer Vision and Pattern Recognition
Saliency code Row-wise & i i (CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 3360-3367.
. ®Recall is defined 2. R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, and S. Susstrunk, “Slic superpixels
; as the perce ntage of compared to state-of-the-art superpixel methods,” Pattern Analysis and Machine

Intelligence, IEEE Transactions on, vol. 34,no. 11, pp. 2274-2282, 2012.
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Annotation Imaging Markup API &
Semantic Information Extraction From Free Text Mammography Reports

Information Sciences
in Imaging at Stanford

Hakan Bulu, PhD, Daniel L. Rubin, MD, MS

r ™ 4 3 i )
Annotation Imaging Markup (AIM) project defines an information model for image annotation | | The AIM API is a Java library which provides RESULTS
and markup in health care. It can be used to annotate images for clinical and teaching | | developers a framework that will enable them
. . . . cie 3 e we s : . : . L From free-text mammography reports, we
purposes, standardized image annotation and markup is most critical in clinical trials. to adopt AIM in their applications. s . :
| J | J extract type of the abnormalities with their
i . . Y ( \ | characteristic (i.e. shape, density, margin
<?xml version="1.0" encoding="UTF-8" standalone="no"?> h INTRODUC TION . . .
<ImageAnnotationCollection xmlns="gme://caCORE.caCORE/4.4/edu.nortly // Creating new intance of — A E_E LA A AT etc.), size and anatomic locations.
‘:Uﬂiqu'fIEIdEﬂtifiEl’ root="qz4v4pltldlynrrsléoedex40ggrijup3mfijwkd // IH]ngannDtatiDnCGllectiDn class Ill radiology reportsj there is 1 huge amOunt Of
<dateTime value="2014-06-20T12:38:43"/> ImageAnnotationCollection iac = dical dat i t t d text f t
<user> | _ medica ata In unstructure ex ormat. ) ) )
<name value="admin"/> new ImageAnnotationCollection(); . With these mformatlon;
<loginName value="admin"/> // Creating new intance of Therefore there is a need to use NLP W b h ¢ text
. c . - - L] - . -
y <r§leInTrlalf> // Equipment class methodologies to discover important information ¢ can que:y s use frec-tex
user Equipment equ = . ’ ’ 1 1 ’ 1
o ot quip nequ el from this data. repo.snorles, 1.e. “KFind all irregular and high
<manufacturerName value="GE MEDICAL SYSTEMS"/> | duib e _ b g denSlty masses.”
<manufacturerModelName value=""/> //*** Setting properties of the equipment - - )
<softwareVersion value="LightSpeedApps308I.2 H3.1M5"/> equ.setManufacturerName ( METHODS e We can fol[{]w-up any partlcu]ar
</equipment> new ST ("GE MEDICAL SYSTEMS")) ; —— . . PP .
<perjon> | o eranmons . equ.setManufacturerModelName ( e Converting unstructed free-text mammography ?lbnorma(iltfy, l-ﬁ‘{ | Slzi gf ‘[hed mass t hls
name value=" -1- - AAAAN .
<id value="338089146142790150429846112194538233781" /> new ST ("%)); reports to srtructed format (XML). EC:(;EISE r::m AL LU LULU G UL RS
<birthDate value="1978-01-16T00:00:00"/> equ.setSmftwareUersiDn{ . . . . paS years-
<sex value="M"/> new ST ("LightSpeedApps308I.2 H3.1M5")); ¢ Calc“latlng Slmllarlty SCore between the . . .
, <ethnicGroup/> // Setting Equipment of abnormalities. ¢ We can run data mining algorithms and can
</person> : : . . . . » .
<imageAnnotations> /_;/ thetémageﬁnnitatlD?CDllectlon ® COH“ECtlng the abnormalities accordlng to their find new relatlﬂnShlpS between the
<Imageﬂnnetatin o ) b e ans e Similarity scores. abnormality characteristics.

04.28.1999 05.17.2000 12.05.2000 08.27.2001 04.29.2002 05.29.2003
Scattered Fibroglandular Densities Heterogeneously Dense Heterogeneously Dense Heterogeneously Dense Heterogeneously Dense Heterogeneously Dense
##% Left Breast *** ##% Left Breast *** *%% Right Breast *%* k% Left Breast **% ®#% Left Breast *** #%% Left Breast *%*

Calcification Calcification
Category Benign Category Benign

Mass
Shape Oval

Mass Mass Mass
Shape Oval Shape Oval Shape Oval

Laterality Left Laterality Left Margin Circumscribed Margin Circumscribed Margin Circumscribed Margin Circumscribed
[Calcification |} [ Calcification Size 1.9cm Size 1.1 cm Size 9 mm Size 7 mm
T ) Laterality Right Laterality Left Laterality Left Laterality Left
ype Punctate Type Punctate

T e ClockFace 7 ClockFace 7 ClockFace 7 ClockFace 7
Laterality Left Laterality Left Deod Middl Deotl Anteri Dent Anter Dentt —
CIDCI{FHCE 12 CIDQkPaCE 1 epun | c cpin erior epin Erior cpin erior
' Depth Anterior ' Depth Anterior I §§ Mass Calcification Calcification Calcification

v q Shape Oval Category Benign Category Benign Category Benign
Spacial Case Spacial Case . : . : : .
Type Lymph_Nod T Lymph_Node I;argm ?I;uunscnbed Laterality Left . Laterality Left Laterality Left
Laterality Left Laterality Left e e Calcification Calcification Calcification

Laterality Right :
Quadrant Upper_Outer . T Type Punctate Category Bemgn Type Punctate
Associated Finding ClockFace 8 : '

. T . . : . Laterality Left Type Punctate Laterality Left
Associated Finding Type Architectual Distortion Depth Posterior ,

: : : : ClockFace 1 Laterality Left ClockFace 1
Type Architectual Distortion Laterality Left = . : : .

: Calcification Depth Anterior ClockFace 1 Depth Anterior
Laterality Left ClockFace 1 Distribution Diffuse Scattered Dentl Anterior !
ClockFace 12 Depth Anterior LI: 1121 ot Rll of :se_ CAtiete Spacial Case P HEnol : Spacial Case
Depth Anterior #%% Right Breast *## aterality : Type Lymph_Node Spacial Case Type Lymph_Node U P

- Laterality Left Type Lymph Node Laterality Left
Mass erali . .
Associated Finding Laterality Left *#% Right Breast ***

Shape Oval

Margin Circumscribed
Size 1.5 cm
Laterality Right

Type Architectual Distortion

Associated Finding Mass
Laterality Left Type Architectual Distortion Shape Oval
ClockFace 1

Depth Anterior

Laterality Left

Margi Ci1 1ibed
ClockFace 1 e L CSEH

ClockFace 10 _ Size 1.8 cm
[ ) Depth Posterior #4% Right Breast *%%* Depth Anterior Laterality Right D AT A
*#% Right Breast **# ClockFace 10
#70A BILATERAL DIAGNOSTIC MAMMOGRAM: 7/15/1999 CLINICAL.: gaﬁs s e v . Depth Middle
. . 1ape va ass

Nodules daughter had premenopausal breast cancer Comparison is Mar‘;in Obscured Circumscribed Shape Oval Mass MINING
made to exam dated: 7/16/1997 Froedtert Memorial Lutheran Hospital. Size' ~ 15cm ~ 2cm Margin  Circumscribed Shape  Oval
There are scattered fibroglandular elements in both breasts that could Ty L o L size  1Scm Margin  Obscured

i i i ClockFace 7 ClockFace 10 Laterality Right Size 1.8 cm
obscure a lesion on mammography. Scattered benign appearing Depth Middle ClockFace 10 Laterality Right

Depth Posterior Depth Anterior
Region  Central

calcifications scattered benign appearing ... Calcification

Category Benign
aterali |




Automated Methods for retinal Disease Quantification
and Prediction of Progression

Information Sciences

Luis de Sisternes, PhD,! Theodore Leng, MD, MS,2 Daniel L. Rubin, MD, MS! i Imaging at Stanford
1 Departments of Radiology and Medicine (Biomedical Informatics Research), Stanford University School of Medicine, Stanford, CA, USA
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PURPOSE VMETHODS RESULTS

Characterization of retinal disease typically based : | JVERVIEW : | | | : | COLLECTED DATA / EVALUATION DESIGN
on the inspection of 2D color fundus photographs. : | (1)Input: Patient data | (2) Image processing | Featur_e ' (4) Computation  {(5) Dutput; Patient | : |~ 186 AMD eyes (128 patients) over a period of 5 years.
SD-Optical Coherence Tomography (SD-OCT): i 5 extraction ; of risk score | ctratification | ¢ | 5_36 eyes showing progression during clinical follow-up.
- Possibility of axial characterization of sub- : A : — i i 3 ! -
- | | 1N T N = : - s tirn
retinal structures in a few micro-meter scale.  : . ; * IRCEILREINEERS, : 2le il - . F R
: : . Genetics — , | benetic Feat: - Fpy i £ = = i A RN TIRT ALy PO
- Manual segmentation extremely tedious. - = ; et : TR I S i LA S T LT Cas - S
SD-OCT cube nvironmental data i i LD | NI i T 5 ey Tt e l Ve S T L S
o e o : ! : i omputation ot risk score | § | Fatient classincation as 5 E'H ST e T se R Tt ife t . ..'rI':'I:,. .
e | | | SD-0CT Imaging /E% at t elapsed months from [~/ high-risk or low risk at ¢ ~ s 'k I il R LT R
oG] | | features: F3- Fye B visit: S(t) i | elapsed months from visit o _ _
_ g = — I | ; - Training on 790 observations: Pairs of feature set at dry
axial 30-IL1 images 30 Retina layer - TTHSEn i i AMD clinical visit and known outcome at follow-up.
(depth) Lollected data at clinical HERELEUEIE Segmentation | | - s
\ __f _ | ; ; - Patient based 10-fold cross validation.
| visitirom patient Add to patient i i - Confidence intervals by 108 bootstrap resampling with
diagnosed with dry AMD . | |
i known history 5 ; replacement.
P r od : | | PERFORMANCE AT GIVEN ELAPSED TIME SINCE CLINICAL VISIT
Vve propose ully automated methods O\ |z peermy 14veR SEGHENTATION 3-0 DRUSEN SEGMENTATION ' ' ' ' ' ;
guantitatively assess disease and predict| : M RPE inner surface i
i i i i ) S A Fitted RPE inner surface 2
progression using SD-OCT imaging o i ]
C N Fitted RPE outer surface £ !
Automated N Rty i e S e Ak — | ]
N SEngntﬂtlﬂn Elﬂd AR g o A T - ° 10 20 FoIIow—upt?n?e (months) @ > %
_ l/ « [ . 200 Considered e.yes in dataset _
SD-0CT scans _ quantification 2 }
B | | §1oo— x\ =
: i Quantitative image : | . 1T - =
atlent data fEHturES - : IR, . g EES e P - N s s ‘ E ’ ® ? Elapsed montr?sosince baseline * » >
- . E = o o = . - Original SD-OCT data l E 1 Meassured AUC in ROC testing for progression at variable times
senetic data > ; = o I\ ' | | - T_"_ 1
_ o _ : ¥ INTRARETINAL AUTOMATED SEGMENTATION v o st BN 2N - _
Genetic data > |dentification of disease 5 , i; B Dotoctod drvser AR %" SSSIIERSSS 1 - ﬁ
Demographics and ) status and risk assessment | e o Lo I R " *
mEd”::al hlStu I-'y E E . ROC curve for classification at/emo'“hs N ROC curve for classification a 12 morihs . ROC curve for classification at 18 months
) ﬁ | | | /ﬁ o (/
APPLIEATIONS - SV
- Focus: Prediction of Age-related macular : |
degeneration (AMD) progression. s« S e
- Initial disease stage Automatically segmented ~—
- SD-OCT dat
i = | SURVIVAL AT 12 MONTHS CLASSIFIL,
i appearance of drusen P
Frogression [l Appearance O AN COMPUTATION OF RISK SEORE .
_________ Unknown factors I _ _ _ _ .o teof Cinettod o High ok (ot
--------------- ISR T T Progression score at time T based in a Poisson | : . e
- Advanced disease stage. distribution given ¢ predictors i =
Wet AMD - Treatment complicates as P & o L u
disease progresses. P(t,a )= g ( PotPrantfooote+frax )1 . .
PrOmpt |ntervent-|0n Car! greatly ImprOve Vlsual 5 !SEI'I Sl[. w? k ‘ ' =X _ [ﬂl’”.’ﬂK] found by generalized Iinear E o 95::-'3' ::Dmﬂncigwmm;: G 2 u,-----;.‘;:"-'F-—_z.'?ﬂ;nthsSinciﬂdwiagm:ig 5'0_—__5'0
outcome. High-risk patients should have more : | ( ° |I:I/Iumber . ;otalv]f)lutcnet . s[,)td oftreﬂect.v.ty regression for increasing number of features. e s 0 ession risk at 12 months:
follow-up visits than low-risk patients. )¢ *Meanarea  ©Areaorextent ¢ Densily - S N |
. GA ﬂantification and redFi)ction E * Total area * Mean slope ¢ Max. height FATIENT STRATIHILATION . - 5.93 (2.4, 9.85) % of total
HQ(qZ foxicit " P .t :| v~ *Meanvolume < Meanreflect. « Fellow eye status | |Eye classified at time T since clinical visit: P 3 " eyes.
1 OXICILY Severity assessment. : T : : P i
- M lar h |yr ?/ ment : | * RNFL thickness * 1S/0OS disappearance High — risk If S (t) > T . i 1_-16 (0.00, 3.73) % tor low-
<G LA 0L (RN Zlasmssl LI, : |« Cup/Disk measurements ¢ NFL+GCL abnormalities Category(t) < Low—risk  if S(t)<T N risk group.
- Retinitis pigmentosa characterization. : |« Inner retina thickness after ILM peeling. N ool gm0 - 13.32 (5.49, 22.70) % for
- Glaucoma characterization and assessment. : | * Outer retina thickness * Feature evolution Threshold T determined by desired sensitivity/specificity. | : | Y Nmesmdyugnods high-risk group.
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OBJECTIVES

Quantitative assessment of images of cancer
patients is crucial to provide clinicians with
objective information about treatment response
needed for decision making. Making lesion
measurements is laborious and error-prone. The
electronic Physician Annotation Device (ePAD) is
a Web-based tool to assist radiologists in viewing
and measuring cancer lesions. Though presently
geared to research settings, it could ultimately be
adopted in routine clinical practice. Moreover,
through its modular design, it is a platform which
the community can adapt and extend to meet the
needs of quantitative imaging practice.

SYSTEM

ePAD is a rich Web client workstation providing
image viewing and annotation features. The
ePAD client communicates with a server-side
component which queries an existing PACS and
stores ePAD image annotations in an AIM
database. These resources are searchable in
applications such as content based image
retrieval and cancer lesion tracking.

o~ T

ePAD . | [ ]
Serverside > <~ | AIM XML
D T g ’| Database

Image viewing and
reporting with ePAD

. ePAD Web
Client

Image Viewing and
Semantic Annotation

ePAD SUPPORTS AIM TEMPLATES

AIM provides a structured representation of
image metadata in computer-readable format.
AIM templates provide customizable structured
reporting forms. A radiologist views images,
makes measurements, and describes their
features, while ePAD seamlessly records all data
in AIM format, stored in the ePAD AIM database.

Annotations
linked to images

The ePAD AIM database produces automated
summaries of target lesions and aggregate
measures indicating treatment response.

Automated lesion tracking and summary

EPAD INTEGRATES XNAT

ePAD uses the XNAT platform for managing
projects, users, and non-DICOM images to
improve interoperability. The ePAD GUI organizes

EPAD API AND PLUGINS

ePAD provides an API and plugin mechanism so

that developers can extend the ePAD platform.

API:

1. Java-based programming interface

2. Methods to read/write AIM to AIM database

Plugins:

1. Front-end plugins to extend the user interface

2. Back-end plugins to add quantitative image
analysis and processing capabilities

: Pr—
Quantitative Image Feature Plugin

IMAGE ANALYSIS'WORKFLOWS

We are developing a pipeline mechanism for

automated analysis of quantitative imaging

biomarkers directly from the annotated images.
Input V-

Parameter
Settings

b

Output

Plug-in

Quantitative Image

Imagesand Analysis Results

Preprocessing

Maps in ePAD Pipeline of Plug-Ins

Automated segmentation of PET images

APPLICATIONS

Decision support: ePAD can leverage prior
measurements in AIM to prompt the radiologist
to annotate all target lesions (and to recognize
missing measurements). It can also help the
oncologist by producing patient response graphs
and waterfall plots automatically from AIM-
annotated images.

Auditing and quality assurance: AIM enables
linking the lesion measurements to the actual
annotations on images for rapid audit and quality
assurance on quantitative assessments of images.

Lesion tracking: ePAD can query historical
annotations in a patient who had several follow
up studies, automatically generating a
quantitative imaging summary report.
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Rapid learning with primary healthcare data

Marina Bendersky, Samuel Finlayson, Balasubramanian Narasimhan, Philip W. Lavori, Daniel L. Rubin

Automated assessment of clinical images et

Marina Bendersky, Daniel L. Rubin

OBJECTIVES METHODS /' PRELIMINARY: RESULTS Melanoma Rapid Leaf"‘:gs}jmjj“j{mW

Please be sure to only run one analysis at a time. Rapid

Develop a method prototype using R and R ‘Shiny’ applications Soifcant ncings may yield fase-postve resuls.

Kaplan Meier Tumor Response
® I 1 ° ° o Stratification Variable:
Develop a rapid learning system for Front end requires three main processes (‘Shiny’ apps) to: ong are - Caplin
cancer decision support
- No data sharing required since the propose a new distributed computation, set up a master process, - 3 % {[ - wosmavae
computation of the models is and instantiate a slave site. 2 l TL L - gpermy”
distributed i Byt A — e
Sex: 3 ) ‘ | Lkﬁ — 1 O DASATINIB (2)
- R e : .
2o Sie 2 ° I, = orRoYUREA
St?r:tri:afi(és' St?;::;ff:s- B Fmer s R ——— N ® INTERFERON (6)
L(B) =1(X1:ﬂ)’.l{(ﬁ), L(B) =l(X2,ﬂ),'l§(ﬂ), S o | * ® IPILIMUMAB (28)
. . . H(B) L (B) o1 O MDX-1106 (2)
Prediction Engine pge rance = ProLmiseL

{]
A v

() Filter By BRAF Status

) Days
[ Fitar Bu ARAS Statiic

[\

Bookshelf,
Citerature REFERENCES
. Rapid Learning _ En
Bedside Knowledge Base Care Provider . W. Jiang, P. Li, S. Wang, Y. Wu, M. Xue, L. Ohno-

Machado, X. Jiang. WebGLORE: a web service for Grid
Logistic Regression. Bioinformatics 2013, 29(24):3238-3240

* Y. Wu, X. Jiang, J. Kim, L. Ohno-Machado. Grid Binary
Logistic Regression (GLORE): building shared models
without sharing data. JAMIA 2012, 19(5):758-764.

Site 4
Data: X4
Summaries:

14(B) = (X4, B), 1y (B),
15 (B)

Site 3
Data: X3
Summaries:

I3(B) = 1(Xs, B), I3(B),
15(B)
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Tools for automatic tumor assessment

Input un-annotated images Automatic Segmentation Computation of features 1) Lesion tracking: Identify same

. ey lesions at different time points

- ¥ i
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e 2) Automated RECIST summary
R of lesions and treatment response

3) Discover new quantitative
imaging biomarkers of cancer
response by correlating them
with clinical covariates (e.g.,
overall survival)




Automated computational identification of anatomical tumor location associated with survival in

two large cohorts of human primary glioblasotmas

Tiffany Ting Liu'-?, Achal S. Achrol’#>, Lex A. Mitchell?, William Du?, Joshua J. Loya>, Scott Rodriguez>, Abdullah Feroze>, Josh Stuart®, Griffith R. Harsh IV>, Daniel L. Rubin!-?
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°Biomolecular Engineering, UC Santa Cruz, Santa Cruz, CA

Overview analysis workflow

Univariate and multivariate cox analysis of clinical variables in the training data set. Numbers in parentheses are 95%

Figure 1. (a) Automated IMage processing plpellne confidence intervals. GTR: gross total resection; STR: subtotal resection
1. ROl Segmentation 2. Skull Stripping 3. Pre-Registration 4. Post-Registration 5. ROI Registration Univariate cox Multivariate cox
. HR (95% Cl) p-value HR (95% Cl) p-value
Age 1.02 (1.007, 1.03) 0.00093 1.02 (1.01, 1.03) 0.001
Gender 0.93 (0.72, 1.20) (M) 0.567 - -
Multicentric/Solitary 0.46 (0.33, 0.64) (S) 2.37e-06 0.66 (0.47, 0.93) (S) 0.019
CEL tumor volume 1.001 (0.997, 1.006) 0.58 - -
Surgical resection 0.1992 (0.1378, 0.2880) (GTR) | 11616 0.22 (0.15, 0.32) (GTR) 5.88e-15 (GTR)
0.4991 (0.3731, 0.6675) (STR) 0.56 (0.41, 0.76) (STR) 0.000254 (STR)
Fig. 2. Axial, sagittal and coronal slice views of the region Fig. 3. Kaplan-Meier survival curves of patients with
(b) Algorithm training on SUMC (c) Algorithm validation using TCGA cohort associated with poor survival in the training SUMC cohort ~ GBMs depict decreased overall survival in patients
cohort Uncategorized patients (p-value < 0.05) with an overlap (Group I) vs. non-overlap (Group Il)
SUMC cohort with the prognostic voxels identified from the

training data set (log-rank test p = 0.0341) in the
test TCGA cohort

stratification

<
-

Prognostic imaging
features (voxels)

—— Overlap with significant voxels (n=21) - Group I
—— No overlap with significant voxels (n=110) - Group II

Poor survival { ] 4
(< 11 months) {4

1
1
\

0.8
|

Poor vs. good
overall survival
voxel (feature) selection

0.6
|

Survival (fraction)

Cerebrum Lobe Gyrus Tissue and cell % Significant
Classified as Classified as type voxels S
poor survival good survival Molecular characterization of Right Temporal Sub-gyral White matter 41.1
. : the poor prognostic group Right  Sub-lobar Lateral Cerebro-Spinal 30.7 S
Good survival : :
(217 months) b voarna [N ventricle Fluid
eren e | 1R Right  Sub-lobar Extra-nuclear White matter 11.3 S - | | | | E—
::“ ,' ; : Right Limbic Posterior White matter 10.5 0 10 20 30 40 50
TR Cingulate Time (months)
h mstncation [ omosypous Deetion | utain Right Occipital Sub-Gyral White Matter 4.7
‘| =t ST T Molecular characterization of the poor prognostic group
[ Molecular Subtypes ool bl ’
- - module
mm CI(I;\/IP NPc:’rc])r?eill\:IP Neural Classical Mesenchymal Total D A SR
i C . - Group | —overlapping 0) 7/ 2 5 6 20 /
Group Il = non- 4 22 21 25 31 103 S
overlapping o
% in molecular subtype 0 24.1 8.7 16.7 16.2 16.3 @'

SAMR analysis comparing Group | (overlap with prognostic region) and Group Il ( no overlap) identified genes amplified
in Group | enriched in neural stem cell processes (platelet-derived growth factor receptor-alpha signaling pathway)

Anatomical structures associated with poor survival
Statistical analysis to identify area of differential involvement (ADIFFI) consisted of first
constructing a contingency table comparing 2 differential phenotypes (e.g. poor survival Forebrain dorsal/ventral pattern formation;

Gene ID Gene name FDR g-value Chrom - Pos GO functional enrichment/literature citations

GSX2 GS homeobox 2 0 i neuron fate specification(1)

versus good survival) and presence of tumor versus no tumor involvement for each image CHIC2 and PDGER regulate GBM stem cell markers

voxel with a 2-tailed Fisher exact test performed on a voxel wise basis. CHIC2— Cysteine-rich hydrophobic domain 2 0 4 and other neural differentiation markers(2)
Permutations with the threshold-free cluster enhancement (TFCE) method previously RECA I sesemaipioteini A RpSeitlos en el 0 ' T
. . . _ . _ CIT Mast/stem cell growth factor receptor 0 A LNX1 and KIT amplification has been shown
described were applied to correct for multiple comparisons and a family-wise error rate to Kit experimentally in CNS tumors (3)
ensure an FDR < 0.05. PDGERA platelet-derived growth factor receptor, 0 4 PDGFRA and KIT are commonly amplified in

alpha polypeptide GBM(4, 5)




OBJECTIVES

To develop an age-period cohort model (APC)!-%:
logA(a,p,c,i) = p+ p(i) + ala) + n(p) + y(c)

L]

Period Cohort
6 Age

21 ?
E i 4 . + - - + - w- v - - = . . 4 - v 4 -
T} 60-9 B0-9 44 55 &4 . 1855 1875 85 1915 1835 18955
Period Cohort
2 -

Fig 1. A sample range of age, period cohort functions?.

that accounts for the effects of screening
mammography (SCR) and menopausal hormonal
therapy (MHT) using breast cancer incidence
data from SEER registries.

METHODS

APC model’s identifiability problem:

2000
1990}
1980}

1970k ...

Period

1960}

1950 /7

1940}

Fig 2. Lexis diagram showing age, period, cohort relationship

Since:

there 1s over-parameterization from the linear
dependence of the parameters. Hence, the
system cannot be uniquely and simultaneously
estimated!!

c=p—a

», Understanding the Temporal Trends of Breast Cancer Incidence in the United States: a Novel
Approach to address Identifiability in Age-Period-Cohort models.
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0.00

Information Sciences
in Imaging at Stanford

Diego F. Munoz, Sylvia K. Plevritis

Prior approaches to handle identifiability problem:

Estimating the effect of screening mammography (SCR) RESULTS

1. Add age-dependent constraints to the period and s [ — toor1o0s
cohort effects specific to the problem3. Contrafactual
. . . opulation . g 1911-1915
2. Fit model assuming cohort or period effect to be 1 ~ Tt Q( SSLUNEN APscy e
zero on average with zero slope (AC-P or AP-C ' Rvgposeg o B e
. r SC fects 3 —— 1941-1945
model, respectively)*. v LR etiee Lo | s
& — 1951-1955
22 Tt
se==Cohort 1 ===Cohort 2 Cohort 3 600.00 s==nhort 1 *==Cohort 2 Cohort 3 2 | Fit into ) _f.l:[)-(ﬁ % g _ 183?:18;2
ED0.00 ) model £ o
40000 Construct A(P-Py,)C" = (AP-C) - (APyy) - Z
SEER
300.00 7
/ 3.

OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

Calibration

/.

200.00 . Background breast caticer incidence with

no SCR and no MHT effects.

10000 tage-specific incidence
- S 4 —— 1891-1895
0.00 T ***Repeat until convergence*** —— 1501-105
25 30 35 40 45 50 55 60 B85 YO V5 BO 25 30 35 40 45 50 55 80 65 YO 75 &0 1906-1910
§ 1 1911-1915
. . . . 1916-1920
Fig 3. AP-C model with zero cohort effects (lett panel) Estimating the effect of menopausal therapy hormonal | = i
. . . B 3 € ® 1931-1935
AC-P model with zero period effects (right panel) § | 1351040
Contrafactual S g | 19461950
. P l' t g ] 21—1 55
We present a novel approach to estimate temporal BCSS ,“,"‘7’“‘; 1;“ Fitint APy npoer 2 L=
factors 1n breast cancer incidence by explicitly . *SCR+MHT* S i ( model y [
considering the effects of SCR and MHT. Only SOR+MEHT ¢ 8-
SEER s |
Let: ) !ﬂ Fitinto__ -
—_— ' " del °
P =Pscr + Puyger + Po T
: Construct AP,C* = (AP-C) - (AP ponisir! . Age o
where P refers to all other period effects (non L Fig 5. Holford’s Background breast cancer incidence
SCR or MHT). SEER : 3
with no SCR effects’.
And 3 ) -/IZVPOC‘ """""""" > BCSS Calibration &0
*SCR+MHT* Notably lower cohort effect and SCR effects. Our approach
APC ~ SEER qoc_gpm .. produces a residual period effect in younger cohorts that can

be associated with increases in age at parity and obesity.
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. ***Repeat until convergence**
We use the previously developed Breast Cancer

Screening Simulator (BCSS)° capable of
reproducing SEER trends by modeling the effects

of SCR and/or MHT. . . . 2.
Using the AP, derived from prior steps:

Estimating the ‘others’ period and cohort effects
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With this procedure, we re-allocate residual period
into cohort effects.

By leveraging on this model, we estimate the TIONAP
individual temporal components iteratively. NET | TH(L:IE%E



Computer-Aided Diagnosis of Breast Cancer Using Unsupervised Feature Learning
Rebecca L. Sawyer, Daniel Rubin

PROBLEM METHODS METHODS RESULTS
[ ]
Problem: Mammography is subject to reader Pipeline 2. Avtomated Paich Exiraction Data
variability and inaccuracy. * Extract 10 random patches of 35x35 pixels «DDSM
Mammogram within the masked area (completeMask =

breastMask n ROIMask) of each fraining *Training Set
Breast Cancer is the most deadly cancer among women image.
worldwide. Early detection greatly improves chance of
survival, but currently only about 20% of biopsied lesions
are actually cancerous [1]. This results in:

*1228 images (not including mirrored images)

* 35x35 patch = 1x1225 feature vector « 563 masses (355 benign, 208 malignant)

o Wasted resources Test Set
o Unnecessary invasive procedures 3. Deep Learning Model *404 images

* 2stacked autoencoders

Psychological damage fo false positives [2] * 197 masses (130 benign, 67 malignant)

Analysis

Fgute 2. The mean score of each of the 8 psychosolal outcomes, part 1 of the COS.6Cfo the
3 Screning groups at 5 time poiis: 0 1. 6. 16, and 36 monihs.

T — T = O—C Ie . * Hold-out validation
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Greedy Layer-wise Training

Determine Knee

Solution: Computer-Aided Diagnosis (CADx)
Approach: Unsupervised feature learning

Specific Aims
O To develop methods of unsupervised feature learning 1 . Z:cei2iIc?l’?czglfr;\gvr:r?l?qetg$g?<)embc§/n|:;cryz]cIsco Gimenez

for quantitative analysis and characterization of breast

lesions and dense tissue Funded by SGF

O To build a CADx system for decision support in
mammography
O To evaluate accuracy of CADx predictions
For additional information please contact:
Weights from First Autoencoder
. it ;g Rebecca Sawyer
Overall goal: To improve positive predictive value _ Biomedical \:%rmancs

of mammography screening. Stanford University
risawyer@stanford.edu



